

Popov Vsevolod

Glossary

- Object recognition распознавание объектов
- Edge-based description описание объекта по его краям
- Primal sketch первоначальный (грубый) эскиз
- Vertexes вершины
- Surface normals нормали к поверхности
- 2.5D sketch: 2D эскиз с нормалями

Glossary

- Face грань
- Generalized cylinder обобщённые цилиндры
- Alignment theory теория выравнивания
- Orthographic projection ортогональная проекция
- Basis set базисный набор
- Goldilocks (Rumpelstiltskin) principle принцип Златовласки

Content

- David Marr: representational framework (based on transformation of representational apparatus)
- Shimon Ullman: alignment theory (corresponding points)
- Shimon Ullman: Goldilocks principle (correlation)

Representational framework

Representational framework

Disadvantages:

- Hard to do
- Produced generalized cylinders are too coarse

Alignment theory

A B C Unknown

$$X_U = \alpha * X_A + \beta * X_B + \gamma * X_C + \tau$$

$$X_U = \alpha * X_A + \beta * X_B + \gamma * X_C + \tau$$

$$X_U = \alpha * X_A + \beta * X_B + \gamma * X_C + \tau$$

We can generate the points in some 4th (Unknown) object from the points in three sample objects (A, B, C) with linear operations

Alignment theory

Disadvantages:

It doesn't work fine on natural objects

Conclusion:

Alignment theory works great in some circumstances (manufactured things with identical dimensions)

BUT

it doesn't seem to solve the whole recognition problem.

Does the whole face #1 correlate with face #3 or face #4? NO!

If we're looking for eyes of face #1, than we have got these eyes everywhere (3,4)

Pre-recorded LIBRARY unknown 1 2 3 4

We DON'T look for:

- big features (whole faces)
- small features (individual eyes)

We LOOK for: intermediate features (two eyes and a nose)

How do we go about finding the exact face?

Answer is:

we use maximization function and it gives a very big number if there is a correlation and a very small number if there isn't.

Main problem:

How can we visually determine what's happening, **actions**...?

